A novel way to present flood hazards using 3D-printing with transparent layers of return period isolines

Authors

  • Tomas Burian
  • Svemir Gorin
  • Ivan Radevski
  • Vit Vozenilek

DOI:

https://doi.org/10.12854/erde-2020-417

Keywords:

3D printing, modelling, floodplain, Vardar River, GIS

Abstract

This paper examines the 3D printed results of a floodplain analysis usually used for hydrological studies to calculate the probabilities in high water stage features. The analysis was performed using probability distributions, including Pearson type III distribution, Log-Pearson type III distribution, Gaussian (normal) distribution, Gumbel distribution, and Log-normal distribution. The maximum theoretical stages of best fitting distribution for different return periods were mapped to the Vardar and Boshava rivers in the Tikvesh Valley. Data to create the model were extracted from digital elevation models of the Vardar river target area. The extracted 3D surface model was covered with a map showing all the flooded areas in the relevant territory for different return periods as transparent layers. The data were converted into a physical model (relief map) using 3D printing methods for visualisation.

References

Ahilan, S., O’Sullivan, M., Bruen, M. 2012: Influences on flood frequency distributions in Irish river catchments. Hydrol. Earth Syst. Sci., 16, 1137–1150.

Berlin, A., Hernandez, A., Kinsley, J., Russell, D. 2007: Apparatus and methods for 3D printing.

Berman, B. 2012: 3-D printing: The new industrial revolution. Business Horizons, 2012, 55, 155-162.

Brus, J., Barvíř, R. 2015: Coping with Integrating Low-Cost 3D Printing and Surface Models: A case Study on Prusa i3 Surface Models for Geosciences. Springer,45-59.

Burian T., Brus J. 2016: 3D PRINTING FOR SUPPORTING TEACHING AND LEARNING IN GISCIENCE. In: SGEM2016: Conference Proceedings. Sofia, Bulgaria: STEF92 Technology Ltd., 2016, June 28 - July 6, Vol. 1, 547-552 pp.

Chua, C. K., Leong, K. F., Lim, C. S. 2010: Rapid prototyping: principles and applications: World Scientific.

Curebal, I., Efe, R., Ozdemir, H., Soykan, A., Sönmez, S. 2016: GIS-based approach for flood analysis: case study of Keçidere flash flood event (Turkey). Geocarto International, Volume 31, Issue 4, 355-366.

Digitalglobe 2009: Google earth V 7.1.8.3036 (June 1, 2009). Demir Kapija, Republic of Macedonia. 41°24'39.31"N, 22°14'58.16"E. Available at: http://www.earth.google.com [June 1, 2009].

Garrity, CH. P., Hackley, P. C., Urbani, F. 2004: Digital shaded-relief map of Venezuela. Version 2.0, 2009. U.S. Geological Survey. ISSN 20041322. Available at: http://pubs.er.usgs.gov/publication/ofr20041322.

Ghawana, T., Zlatanova, S. 2013: 3D printing for urban planning: A physical enhancement of spatial perspective. Urban and Regional Data Management: UDMS Annual 2013, 211.

Iangens, J., Krauklis, K. 2011: Creating of Digital Relief Map for Regional Hydrogeological Model of Latvia. Boundary Field Problems and Computer Simulation. Vol. 50, 2011, pp. 21-25. ISSN 1407-7493.

Icaga, Y., Tas, E., Kilit, M. 2016: FLOOD INUNDATION MAPPING BY GIS AND A HYDRAULIC MODEL (HEC RAS): A CASE STUDY OF AKARCAY BOLVADIN SUBBASIN, IN TURKEY. Acta Geobalcanica, Volume, 2(2), 111-118.

Jacobs, L. D. 2003: Terrain modeling using rapid prototyping. West Lafayette, Indiana: School ofCivil Engineering Purdue University work performed at Milwaukee School of Engineering.

Khattak, M. S., Anwar, F., Saeed, T. U., Sharif, M., Sheraz, K., Ahmed, A. 2016: Floodplain mapping using HEC-RAS and ArcGIS: a case study of Kabul River. Arabian Journal for Science and Engineering, 41(4), 1375-390.

Merwade, V., Cook, A., Coonrod, J. 2008: GIS techniquesforcreatingriverterrainmodelsforhydrodynamic modeling and floodinundationmapping. Environmental Modelling & Software, 23(10), 1300-1311.

Patterson, T. 2014: Mountains Unseen: Developing a Relief Map of the Hawaiian Seafloor. Cartographic Perspectives, North America, 0, oct. 2014. Available at: <http://www.cartographicperspectives.org/carto/index.php/journal/article/view/cp76-patterson/1295>.

Phillips, R. J., Lucia, A., Skelton, N. 1975: Some Objective Tests of the Legibility of Relief Maps. The Cartographic Journal, Vol. 12 , Iss. 1, 1975.

Průša, J., Průša, M. 2014: Základy 3D tisku. Prusa Research.

Radevski, I., Gorin, S. 2014: Stage frequency analysis of Great Prespa Lake. In: SGEM2014: Conference Proceedings. Sofia, Bulgaria: STEF92 Technology Ltd., 2014, June 19-25, Vol. 1, 633-638 pp.

Radevski, I., Gorin, S. 2017: FLOODPLAIN ANALYSIS FOR DIFFERENT RETURN PERIODS OF RIVER VARDAR IN TIKVESH VALLEY (REPUBLIC OF MACEDONIA). Carpathian Journal of Earth and Environmental Sciences, February 2017, Vol. 12, No. 1, p. 179 – 187.

Rase, W.-D. 2012: Creating physical 3D maps using rapid prototyping techniques. True-3D inCartography (pp. 119-134): Springer.

Roub, R., Novák, P., Hejduk, T. 2013: OptimizationofFloodProtection by Semi-Natural Means and Retention in theCatchment Area: A Case Study ofLitavka River (CzechRepublic). MoravianGeographicalReports, 21(1), pp. 51-66. Retrieved 11 Jan. 2018, from doi:10.2478/mgr-2013-0005.

Ruzínoor, Ch. M., Shariff, A. R. M., Mahmud, A. R., Pradhan, B. 2011: 3D Terrain Visualisation for GIS: A Comparison of Different Techniques. In: True-3D in Cartography. Springer Berlin Heidelberg, 2011. p. 265-277.

Schoorl, J. M., Sonneveld, M. P. W., Veldkamp, A. 2000:Three-dimensionallandscapeprocesmodelling: Theeffectof DEM resolution. EarthSurfaceProcesses and Landforms, 25(9),1025–1034.

Schwarzbach, F., Sarjakoski, T., Oksanen, J., Sarjakoski, L. T., Weckman, S. 2012: Physical 3D models from LIDAR data as tactile maps for visually impaired persons. True-3D in Cartography (pp. 169-183): Springer.

Simón, F. J. V. 2015: DEMto3D. Available at: http://demto3d.com/en/demto3d-disponible-qgis/ (24. 4. 2016).

Srebrenović, D. 1986: Applied Hydrology. TehničkaKnjiga, Zagreb, 509.

Svobodová, J., Voženílek, V. 2010: Relief for Models of Natural Phenomena. In: Anděl J. et al. (eds.): Landscape Modelling. Urban and Landscape Perspectives, vol. 8 Springer Science + Business Media B.V., s.978-90-481-3052-8.

Traore, V. B., Bop, M., Faye, M., Malomar, G., Sambou, H., Dione, A. N., Beye, A. C. 2015: Using of Hec-ras Model for Hydraulic Analysis of a River with Agricultural Vocation: A Case Study of the Kayanga River Basin, Senegal. American Journal of Water Resources, Vol. 3, Iss. 5, 147-154.

Vasileski, D., Radevski, I. 2015: Analysis of high waters on the Kriva Reka River, Macedonia. ActaGeographica Slovenica, 54(2), 363-377 pp.

Von Wyss, M. 2015: 3D-Printed Landform Models. Cartographic Perspectives(79), 61-67.

Zorn, M., Hrvatin, M. 2015: Damage caused by natural disasters in Slovenia between 1991 and 2008. Acta Geobalcanica, Volume 1, Issue 1, 33-43.

Downloads

Published

2020-03-02

How to Cite

Burian, T., Gorin, S., Radevski, I., & Vozenilek, V. (2020). A novel way to present flood hazards using 3D-printing with transparent layers of return period isolines. DIE ERDE – Journal of the Geographical Society of Berlin, 151(1), 16–22. https://doi.org/10.12854/erde-2020-417

Issue

Section

Research articles